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This paper presents a discrete-time sliding mode control scheme for a class of master–slave
(or drive-response) chaotic synchronization systems. The proposed scheme guarantees the
stability of closed-loop system and achieves the global synchronization between the mas-
ter and slave systems. The structure of slave system is simple and needs not be identical to
the master system. Moreover, the selection of switching surface and the existence of slid-
ing mode have been addressed. Numerical simulations are given to validate the proposed
synchronization approach.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Chaotic behavior is an interesting phenomenon appearing nonlinear systems and has been received more and more atten-
tions in the last decades. A chaotic system is a highly complex dynamic nonlinear system. The prominent characteristic of a
chaotic system is its extreme sensitivity to initial conditions and the system’s parameters, and this makes the problem of
chaotic synchronization much more important. In the last few years, chaotic synchronization has applied in vast area of
physics and engineering systems such as in chemical reactions, power converter, biological systems, information processing,
especially in secure communication [1–3]. Many methods have been developed to realize the problem of the synchronization
of chaotic systems including state feedback method [1,2,4–10], the observer method [3,11–15] and output feedback method
[16]. However, these methods are developed in continuous-time system. To the best of the author’s knowledge, the problem
of synchronizing uncertain chaotic systems in discrete-time domain has not been fully investigated and is still open in the
literature. This has motivated our research.

On the other hand, using computers or DSP chips to implement the controller has become more and more important now-
adays. Therefore, research in discrete-time control has been intensified in recent years, and it is quite natural to extend the
technique of continuous control to discrete-time systems. Sliding mode control (SMC) is a nonlinear control approach. The
continuous-time SMC is known as a robust method and has attractive features such as fast response, good transient perfor-
mance, insensitiveness to the matching parameter uncertainties and external disturbances [17,18]. Over the past few years,
it has been widely applied to many practical control systems. Several design methods of discrete-time SMC have been pro-
posed in the literature [19–23].

In this paper, a discrete-time SMC scheme is developed to control the synchronization of a class of uncertain chaotic sys-
tems in the master–slave (or drive-response) framework. The proposed scheme has the following attractive features: (1) the
control design is rather straightforward and ensures the synchronization of the master–slave chaotic systems, (2) the struc-
ture of slave system is simple and needs not be identical to the master system, (3) the discrete-time SMC needs not a switch-
ing type of control law. Chattering phenomenon and reaching phase are eliminated, (4) the control strategy can be easily
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applied to other dimensional chaotic synchronization problems. The organization of this paper is as follows. Section 2 briefly
states the master–slave chaotic synchronization systems. Section 3 provides the proposed discrete-time SMC scheme. Sec-
tion 4 presents results from numerical simulations. Finally, a conclusion is provided in Section 5.

2. System description and problem formulation

Consider a class of chaotic systems described by
_xðtÞ ¼ AxðtÞ þ Bgðx; tÞ; ð1Þ
where xðtÞ 2 Rn is the state vector, gð�Þ 2 Rr represents the nonlinear function vector that may include unknown parameter
perturbations and external disturbances. The constant matrices A and B are known constant matrices of appropriate
dimensions.

Remark 1. It should be noted that chaotic system (1) is quite popular and has been used in many studies in the literature,
such as Lorenz system [4,6,24], Chen chaotic dynamical system [5], Duffing–Holmes system [7], Chua’s circuit [8], and Chen–
Lee system [25].

The discrete-time representation of system (1) with sample and hold process is given by
xðkþ 1Þ ¼ UxðkÞ þ CgðkÞ; ð2Þ
where the sampling time is T , U ¼ eAT and C ¼
R T

0 eAsdsB [22]. The main objective of this paper is to find a discrete-time slid-
ing mode controller to synchronize the discrete-time chaotic system (2) in the master–slave (or drive-response) framework.
To facilitate further development, we make the following assumptions:

Assumption 1. The pair ðU;CÞ is controllable.
Assumption 2. The sampling interval T is assumed to be sufficiently small such that the nonlinear function gðkÞ does not
vary too much between consecutive sampling instances. Also, there exists a positive constants q such that
jjgðkÞjj 6 q <1: ð3Þ

In this paper, for the general class of discrete-time chaotic system (2), the master and slave systems are respectively de-

fined as follows:
xmðkþ 1Þ ¼ UxmðkÞ þ CgðkÞ; ð4Þ
and
xsðkþ 1Þ ¼ UxsðkÞ þ CuðkÞ; ð5Þ
where xmðkÞ 2 Rn and xsðkÞ 2 Rn are the master system’s state vector and slave system’s state vector, respectively, uðkÞ 2 Rm is
the control input vector, and jjgðkÞjj 6 q <1.

Let us define the synchronization error eðkÞ vector as
eðkÞ ¼ xmðkÞ � xsðkÞ: ð6Þ
The dynamics of synchronization error between the master and slave systems given in (4) and (5) can be described by
eðkþ 1Þ ¼ UeðkÞ þ CgðkÞ � CuðkÞ: ð7Þ
It is clear that the synchronization problem is replaced by the equivalent problem of stabilizing the synchronization error
system (7) using a suitable choice of the control law uðkÞ. In the sequel, using the proposed discrete-time SMC scheme, the
asymptotical stability of synchronization error system (7) can be achieved in the sense that jjeðkÞjj ! 0 as k!1.

Remark 2. The sliding mode characteristics of discrete-time SMC systems are different from those of continuous-time SMC
systems. It is noted that the motion of a discrete-time SMC system can approach the switching surface but cannot stay on it
in practice. Thus, only the quasi-sliding mode is ensured [19–21].
3. Switching surface and discrete-time sliding mode controller design

In this paper, the switching function is defined as follows:
sðkÞ ¼ GeðkÞ � G expð�bkÞeð0Þ � eðkÞ; b > 0; ð8aÞ

eðkÞ ¼ eðk� 1Þ þ GðUþ CKÞeðk� 1Þ; eð0Þ ¼ 0; ð8bÞ
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where G 2 Rm�n is chosen such that GC is nonsingular, K 2 Rm�n is designed later such that the synchronization error system
(7) in the quasi-sliding mode is asymptotically stable, and the exponential term G expð�bkÞeð0Þ is used to eliminate the
reaching phase.

Using the concept of equivalent control, the equivalent control ueqðkÞ can be found by solving for sðkÞ ¼ sðkþ 1Þ ¼ 0
ueqðkÞ ¼ �KeðkÞ � ðGCÞ�1G expð�bðkþ 1ÞÞeð0Þ þ ðGCÞ�1GCgðkÞ � ðGCÞ�1eðkÞ ð9Þ
or
ueqðkÞ ¼ �KeðkÞ � ðGCÞ�1GeðkÞ þ ðGCÞ�1GCgðkÞ þMðkÞ ð10Þ
where GC is assumed to be nonsingular and MðkÞ ¼ ðGCÞ�1G½expð�bkÞ � expð�bðkþ 1ÞÞ�eð0Þ.
Substituting (10) into (7), the dynamic equation of synchronization error system (7) in the quasi-sliding mode can be ob-

tained as
eðkþ 1Þ ¼ ½Uþ CðGCÞ�1Gþ CKÞ�eðkÞ � CMðkÞ: ð11Þ
Neglecting the exponential term CMðkÞ, it is noted that the synchronization error system (7) in the quasi-sliding mode is
insensitive to the nonlinear function. In other words, the controlled system is robust. Eq. (11) can be considered as a linear
state feedback problem. The gain matrix K can be designed by using the pole placement method.

Remark 3. It is noted that the exponential term CMðkÞ in (11) will decay to zero as k!1, hence it will not affect the
stability of synchronization error system (7) in the quasi-sliding mode.

After designing the switching surface, the next phase is to design the control law such that the quasi-sliding mode is
reached and stayed thereafter. Before designing the controllers, we first give a lemma proposed by [20].

Lemma 1 ([20]). A necessary and sufficient condition for a discrete sliding mode control system to assure both sliding motion and
convergence onto the hyperplane is
jjsðkþ 1Þjj < jjsðkÞjj: ð12Þ
Condition (12) can be further decomposed into the following two inequalities:
sTðkÞ½sðkþ 1Þ � sðkÞ� < 0; ð13Þ

sTðkÞ½sðkþ 1Þ þ sðkÞ� > 0; ð14Þ
where (13) and (14) are called sliding condition and convergence condition, respectively.
For the synchronization error system (7), we consider the control law as
uðkÞ ¼ �KeðkÞ � ðGCÞ�1G expð�bðkþ 1ÞÞeð0Þ þ ðGCÞ�1Gf ðk� 1Þ � ðGCÞ�1eðkÞ þ ðGCÞ�1csðkÞ; ð15Þ
where the nonlinear function f ðkÞ is defined as f ðkÞ¼D CgðkÞ which can be estimated through the following relation
f ðk� 1Þ ¼ eðkÞ �Ueðk� 1Þ þ Cuðk� 1Þ; ð16Þ
and c is a designed parameter.

Theorem 1. Consider the synchronization error system (7) with the proposed control law (15) and the switching function (9). If
there exist the matrices G and K such that Uþ CðGCÞ�1Gþ CK is stable, then

(a) the quasi-sliding mode condition jjsðkþ 1Þjj < jjsðkÞjj will be satisfied outside the region B, where the region B is defined as

XB ¼ sðkÞ : jjsðkÞjj 6 max�1<c<1
aðkÞ
1�c

aðkÞ
1þc

h in o
and jjG½f ðkÞ � f ðk� 1Þ�jj 6 aðkÞ

(b) the closed-loop system of synchronization error system (7) with the control law (15) is asymptotically stable.
Proof. First, we prove that the condition jjsðkþ 1Þjj < jjsðkÞjj is satisfied. For this, the proof includes two parts. h
Part I (Sliding condition). From (7), (8) and (15), the difference between sðkþ 1Þ and sðkÞ can be expressed as
sðkþ 1Þ � sðkÞ ¼ G½f ðkÞ � f ðk� 1Þ� � ð1þ cÞsðkÞ: ð17Þ
Pre-multiplying (17) by sTðkÞ
sTðkÞ½sðkþ 1Þ � sðkÞ� ¼ �ð1þ cÞjjsðkÞjj2 þ sTðkÞG½f ðkÞ � f ðk� 1Þ� < �ð1þ cÞjjsðkÞjj2 þ jjsðkÞjjjjG½f ðkÞ � f ðk� 1Þ�jj

< �ð1þ cÞjjsðkÞjj jjsðkÞjj � aðkÞ
ð1þ cÞ

� �
:
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If jjsðkÞjjP aðkÞ
ð1þcÞ and ð1þ cÞ > 0, then sTðkÞ½sðkþ 1Þ � sðkÞ� < 0, which implies the sliding condition is achieved.
Part II (Convergence condition). From (7), (8) and (15), the sum between sðkþ 1Þ and sðkÞ can be expressed as
sðkþ 1Þ þ sðkÞ ¼ G½f ðkÞ � f ðk� 1Þ� þ ð1� cÞsðkÞ: ð18Þ
Pre-multiplying (18) by sTðkÞ
sTðkÞ½sðkþ 1Þ þ sðkÞ� ¼ ð1� cÞjjsðkÞjj2 þ sTðkÞG½f ðkÞ � f ðk� 1Þ� > ð1� cÞjjsðkÞjj2 � jjsðkÞjjaðkÞ

> ð1� cÞjjsðkÞjj jjsðkÞjj � aðkÞ
ð1� cÞ

� �
If jjsðkÞjjP aðkÞ
ð1�cÞ and ð1� cÞ > 0, then sTðkÞ½sðkþ 1Þ þ sðkÞ� > 0, which implies that the convergence condition is achieved.

From Part I, Part II, and Lemma 1, if jjsðkÞjjP max�1<c<1
aðkÞ
1�c ;

aðkÞ
1þc

n o
, it concludes jjsðkþ 1Þjj < jjsðkÞjj, which indicates that

switching function sðkÞ is decreasing outside XB. Once the quasi-sliding mode condition jjsðkþ 1Þjj < jjsðkÞjj is satisfied, the
synchronization error system state trajectories will approach the switching surface in finite time. Next, it is clear to show
that the error states eðkÞ in the quasi-sliding mode are asymptotically stable if there exist the matrices G and K such that

Uþ CðGCÞ�1Gþ CK is stable. Hence, the closed-loop system is stable. The proof is completed.

Lemma 2. If the control law (15) is proposed for the synchronization error system (7), then the least upper bound of jjsðkÞjj is equal
to aðkÞ.
Proof. From Theorem 1, it is shown that the quasi-sliding mode condition jjsðkþ 1Þjj < jjsðkÞjj will be satisfied outside XB if

the control law (15) is used. Since max�1<c<1
aðkÞ
1�c ;

aðkÞ
1þc

n o
P aðkÞ, it can be found that the least upper bound of

min�1<c<1jjsðkÞjj ¼ min max
�1<c<1

aðkÞ
1�c ;

aðkÞ
1þc

n o� �
¼ aðkÞ. The proof is completed. h
Remark 4. In general, it is usually desired to have a minimum bound of XB in order to increase the accuracy of control if the
nonlinear function f ðkÞ exists. From Lemma 2, if c ¼ 0, the minimum bound of XB will be obtained. Hence, we select c ¼ 0 for
the rest of this paper and the control law (15) is modified to be
uðkÞ ¼ �KeðkÞ � ðGCÞ�1G expð�bðkþ 1ÞÞeð0Þ þ ðGCÞ�1Gf ðk� 1Þ � ðGCÞ�1eðkÞ; ð19Þ
where uð0Þ ¼ �Keð0Þ � ðGCÞ�1G expð�bÞeð0Þ.
It is noted from (19) that there is no switching action in the proposed controllers, which means that chattering phenom-

enon will never happen. Also, the other advantage of (19) is that the upper bound of nonlinear function f ðkÞ needs not to be
known beforehand when the controller is implemented. Hence, it will increase the applicability of the proposed control
scheme.

Theorem 2. Consider the master system (4) with Assumptions 1 and 2. If the switching function (8) and the control law (19) are
used, and there exist the matrices G and K such that Uþ CðGCÞ�1Gþ CK is stable, then the slave system (5) can globally
synchronize the master system (4).
Proof. From Theorem 1, it is clear to show that the proposed control law (19) guarantees the quasi-sliding mode condition
jjsðkþ 1Þjj < jjsðkÞjj is satisfied, and the error states eðkÞ in the quasi-sliding mode are asymptotically stable if there exist the
matrices G and K such that Uþ CðGCÞ�1Gþ CK is stable. Therefore, the slave system (5) can globally synchronize the master
system (4). The proof is completed. h

4. Illustrative examples

To demonstrate the effectiveness of the proposed synchronization scheme, simulations results of three-dimensional Lor-
enz system and Chen–Lee system are given in this section.

Example 1 (Lorenz system). The dynamics of Lorenz system [24] can be transformed into the form of system (1) as
_x1

_x2

_x3

2
64

3
75 ¼

�a a 0
c �1 0
0 0 �b

2
64

3
75

x1

x2

x3

2
64

3
75þ

0 0
1 0
0 1

2
64

3
75 �x1x3

x1x2

� �
; ð20Þ
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where the variables x1, x2 and x3 in (20) represent measures of fluid velocity and horizontal and vertical temperature vari-
ations, respectively, and the parameters a, b, and c are positive parameters representing the Prandtl number, a geometric
factor, and the Rayleigh number, respectively. The dynamics of discrete-time chaotic Lorenz systems with sample time
T ¼ 0:001 s, a ¼ 10, b ¼ 8

3, and c ¼ 28 are given by
xmðkþ 1Þ ¼ UxmðkÞ þ CgðkÞ ¼
0:990 0:010 0
0:028 0:999 0

0 0 0:997

2
64

3
75xmðkÞ þ

0 0
0:001 0

0 0:001

2
64

3
75 �xm1ðkÞxm3ðkÞ

xm1ðkÞxm2ðkÞ

� �
: ð21Þ
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Fig. 1. The chaotic attractor of Lorenz system.
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Fig. 2. The chaotic motions of Lorenz system (the mater system).
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The chaotic figures of Lorenz system (21) are shown in Fig. 1 and display a 2-scroll chaotic attractor. For the master system
(21), the dynamics of the slave system is given by
xsðkþ 1Þ ¼ UxsðkÞ þ CuðkÞ ¼
0:990 0:010 0
0:028 0:999 0

0 0 0:997

2
64

3
75xsðkÞ þ

0 0
0:001 0

0 0:001

2
64

3
75uðkÞ: ð22Þ
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Fig. 3. Synchronization errors between master and slave systems.
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Fig. 4. The chaotic attractor of Chen–Lee system.
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Fig. 6. Synchronization errors between master and slave systems (Pai’s method).

M.-C. Pai / Applied Mathematics and Computation 227 (2014) 663–671 669
The initial states of the master system (21) and the slave system (22) are xmð0Þ ¼ 2 3:5 18:4½ �T and
xsð0Þ ¼ �1 10:2 8:3½ �T , respectively. Using the proposed method, the constant matrices G and K in the switching function

(8) are designed, respectively as G ¼ 0 1 0
0 0 1

� �
, K ¼ �33:4 �994:6 0

0 0 �1002:7

� �
such that GC is nonsingular and eigen-

values of Uþ CðGCÞ�1Gþ CK are located at 0:996 0:997 0:998½ �. The parameter b in controller (19) is selected as 0.1.
The simulation results are shown in Figs. 2 and 3. Fig. 2 shows chaotic motions (or state trajectories) of the master system.
Fig. 3 depicts the synchronization error of state variables between the master system (21) and the slave system (22). It is
clearly shown that the error states converge to zero asymptotically.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

e1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2
e2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

Time (sec)

e3

Fig. 7. Synchronization errors between master and slave systems (Chen’s method [6]).

670 M.-C. Pai / Applied Mathematics and Computation 227 (2014) 663–671
Example 2 (Chen–Lee system). The dynamics of Chen–Lee system [25] can be represented as
_x1

_x2

_x3

2
64

3
75 ¼

a1 0 0
0 b1 0
0 0 c1

2
64

3
75

x1

x2

x3

2
64

3
75þ

1 0 0
0 1 0
0 0 1

2
64

3
75
�x2x3

x1x3
1
3 x1x2

2
64

3
75; ð23Þ
Where x1; x2 and x3 in (23) are the state variables and a1; b1; c1 are three system parameters. The dynamics of discrete-time
chaotic Chen–Lee systems with sample time T ¼ 0:001 second, a1 ¼ 5, b1 ¼ �10, and c1 ¼ �3:8 are given by
xmðkþ 1Þ ¼ UxmðkÞ þ CgðkÞ ¼
1:005 0 0

0 0:990 0
0 0 0:996

2
64

3
75xmðkÞ þ

0:001 0 0
0 0:001 0
0 0 0:001

2
64

3
75
�xm2ðkÞxm3ðkÞ
xm1ðkÞxm3ðkÞ

1
3 xm1ðkÞxm2ðkÞ

2
64

3
75: ð24Þ
The chaotic figures of Chen–Lee systems (24) are shown in Fig. 4 and display a 2-scroll chaotic attractor. For the master sys-
tem (24), the dynamics of the slave system is given by
xsðkþ 1Þ ¼ UxsðkÞ þ CuðkÞ ¼
1:005 0 0

0 0:990 0
0 0 0:996

2
64

3
75xsðkÞ þ

0:001 0 0
0 0:001 0
0 0 0:001

2
64

3
75uðkÞ: ð25Þ
The initial states of the master system (24) and the slave system (25) are xmð0Þ ¼ 2 2 2½ �T and xsð0Þ ¼ 0:2 0:2 0:2½ �T ,
respectively. Using the proposed method, the constant matrices G and K in the switching function (8) are designed, respec-
tively as
G ¼
1 0 0
0 1 0
0 0 1

2
64

3
75; K ¼

�1007:5 0 0
0 �997:0 0
0 0 �999:1

2
64

3
75;
such that GC is nonsingular and eigenvalues of Uþ CðGCÞ�1Gþ CK are located at 0:995 0:998 0:999½ �. The parameter b in
controller (19) is selected as 0.1. The simulation results are shown in Figs. 5 and 6. Fig. 5 shows chaotic motions (or state
trajectories) of the master system. Fig. 6 shows the synchronization error of state variables between the master system
(24) and the slave system (25). It can be seen that the synchronization of the two systems is completed after 1.3 s.

In the following, we will make a comparison between the proposed method and the method by [6]. In this method, the
structure of slave system needs be identical to the master system. Following the design procedure in [6], the synchronization
errors are shown in Fig. 7. From Figs. 6 and 7, it is clearly shown that the proposed method provides faster response and
better synchronization performance than the Chen’s method. Furthermore, one of advantages in the proposed method is that
the structure of slave system is simple and needs not be identical to the master system, which is more general and flexible
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for the synchronization problem for a class of uncertain chaotic systems. Therefore, our strategy outperforms the method
proposed in [6]. From these results, we can see that the proposed scheme yields good synchronization for uncertain chaotic
systems.

5. Conclusions

In this paper, a discrete-time SMC scheme has been proposed for synchronization of a class of chaotic systems. It has been
shown that the proposed control scheme ensures the stability of synchronization error dynamics, and provides good chaotic
synchronization between the master and slave systems. The control design is rather straightforward and easy to implement
for chaotic synchronization. The discrete-time SMC needs not a switching type of control law. Chattering phenomenon and
reaching phase are eliminated. Moreover, the control strategy can be easily applied to other dimensional chaotic synchro-
nization problems. Numerical simulation has confirmed the validity of the proposed synchronization scheme.
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